MATHEMATICAL MODEL OF A ROBOTIC VEHICLE MOTION WITH UNLOADING OF THE CONTACT PROPULSION UNIT BY MEANS OF AN AIR CUSHION
Abstract
The aim of the work is the development of a mathematical motion model of a robotized vehicle of high passability with a partial unloading of the mechanical contact propulsion by means of an air cushion (AC) on the support base. The model will allow one to work out a joint robotic control of these subsystems as robotization implies the existence of algorithms and hardware controls of subsystems. It is assumed that such a complex approach will significantly improve motion stability and control of the vehicle. The developed model is specific as it takes into account the subsystem dynamics influence and the air-cushion creation system features together with the possibility of implementing various methods of controlling vehicle subsystems. The article gives the list of the forces affecting the vehicle and describes the interaction of the contact propulsion unit with the support base. It should be noted that, due to the complexity of the mathematical description of the interaction of the АС creation system with the support base in the driving mode, the interaction of the flexibly protected air-cushion with the support surface will be determined by recalculating the static and tow test results of the existing air-cushion model. Such data have been obtained for an air-cushion vessel model developed at the Central Design Bureau “Neptun” during testing in NIMK TsAGI hydro-channel. The results included the characteristics of an air cushion model (ACM) towing tests on smooth water (aerodynamic resistance, hydrodynamic resistance, impulse air resistance at the entrance to the AC fans, total resistance), and the recovery characteristics of the ACM on the solid and water surfaces.
About the Authors
V. N. Naumov
Bauman Moscow State Technical University
Russian Federation
A. S. Menshikov
FSUE “TsAGI”
Russian Federation
D. A. Chizhov
Bauman Moscow State Technical University
Russian Federation
O. P. Goidin
All-Russian Research Institute of Automatics named after N.L. Dukhov (VNIIA)
Russian Federation
References
1. Горелов В.А. Научные методы повышения безопасности и энергоэффективности движения многоосных колёсных транспортных комплексов: дисс.. д-ра техн. наук. - М., 2012. - 350 с.
2. Смирнов Г.А. Теория движения колёсных машин: Учебник для студентов машиностроительных специальностей вузов / 2-е изд., доп. и перераб. - М.: Машиностроение, 1990. - 352 с.
3. Демешко Г.Ф. Проектирование судов. Амфибийные суда на воздушной подушке: Учебник. В 2-х кн. Кн. 1. - СПб.: Судостроение, 1992. - 269 с.
4. Наумов В.Н., Меньшиков А.С., Кудрявцев А.С., Долгополов А.А., Мерзликин Ю.Ю. Оптимизация параметров несущей системы амфибийного транспортного средства на воздушной подушке // Инженерный журнал: наука и инновации. - 2014. - № 11 (35). - С. 11.
5. Демешко Г.Ф. Проектирование судов. Амфибийные суда на воздушной подушке: Учебник. В 2-х кн. Кн. 2. - СПб.: Судостроение, 1992. - 329 с.
For citations:
Naumov V.N.,
Menshikov A.S.,
Chizhov D.A.,
Goidin O.P.
MATHEMATICAL MODEL OF A ROBOTIC VEHICLE MOTION WITH UNLOADING OF THE CONTACT PROPULSION UNIT BY MEANS OF AN AIR CUSHION. Trudy NAMI. 2017;(3):44-50.
(In Russ.)
Views:
131