Peculiarities of determination of vehicle suspension guiding device kinematics in the design process
https://doi.org/10.51187/0135-3152-2023-3-79-94
Abstract
Introduction (problem statement and relevance). All over the world, automobile manufacturers and research engineers pay a lot of attention to improving vehicle consumer properties. The correct selection of target parameters of vehicle systems at the initial stage of design work is the major factor influencing the subsequent demand for product in the market. This paper investigates the target parameters of vehicle suspension systems and identifies the target ranges for various chassis kinematics and elastokinetics parameters. Taking into account the worldwide trend of vehicle design timing shortening, this is a relevant task.
The purpose of the study is, using the statistical analysis methods, to determine the target ranges of vehicle suspension guiding device characteristics and to analyze the data presented in the references.
Methodology and research methods. During the paper preparation, the statistical analysis methods were used; also, the references and recommendations given therein were reviewed and analyzed.
Scientific novelty and results. The study proposes advisory ranges of vehicle suspension kinematics and elastokinetics parameters.
Practical significance. Using the study results at the initial stage of vehicle design will allow shortening its duration as the parameters given in the paper can be used before the complete target deployment and vehicle chassis development technical assignment issuance.
About the Authors
E. N. MartynovRussian Federation
Martynov E.N. – postgraduate, design engineer
Moscow 125438
I. S. Potashov
Russian Federation
Potashov I.S. – lead design engineer
Moscow 125438
V. M. Zamyslov
Russian Federation
Zamyslov V.M. – design engineer
Moscow 125438
A. I. Bokarev
Russian Federation
Bokarev A.I. – PhD (Eng), lead design engineer
Moscow 105005
References
1. Visich R.B. [Multi-criteria optimization of the vehicle suspension design in terms of controllability and stability. Cand. eng. sci. diss.]. Moscow, MAMI Publ., 2002. 142 p. (In Russian)
2. Oberhausen A. Ford Product Development System. VDIBerichte, 1998, nr. 1398, ss. 355–374.
3. Fecht N. Fahrwerktechnik für Pkw. Landsberg am Lech: Verlag Moderne Industrie, 2004.
4. Ersoy M. Konstruktionsmethodik für die Automobilindustrie. Konstruktionsmethodik – Quo vadis? Symposium des Instituts für Konstruktionslehre, TU Braunschweig, Bericht Nr. 56. Braunschweig, 1999.
5. Genter A. Entwurf eines Kennzahlensystems zur Effektivitätssteigerung von Entwicklungsprojekten. München: Vahlen Verlag, 2003.
6. Rennemann T. Wetbewerbsvorsprung durch Supply Chain Management. Reihe: Arbeitsberichte – Working Papers, Heft Nr. 2. Ingolstadt, November 2003.
7. Weber J. Automotive Development Process, Processes for Successful Customer Oriented Vehicle Development. ISBN 978-3-642-01252-5, DOI 10.1007/978-3-642-01253-2.
8. Ersoy M. Chassis Handbook. Springer Fachmedien Wiesbaden GmbH, 2011.
9. Khusainov A.Sh., Selifonov V.V. [Automobile theory. Lecture notes]. Ulyanovsk, UlGTU Publ., 2008. 121 p. (In Russian)
10. Reimpell J., Stoll H., Betzler J.W. The Automotive Chassis: Engineering Principles Second Edition. Butterworth-Heinemann, 2001.
11. Reimpell J. [Vehicle chassis]. Moscow, Mashinostroenie Publ., 1983. 356 p. (In Russian)
12. Khusainov A.Sh. [Vehicle performance]. Ulyanovsk, UlGTU Publ., 2011. 110 p. (In Russian)
13. Milliken W.F., Milliken D.F. Race car. Vehicle dynamics. Society of Automotive Engineers Inc. Warrendale, Pa., 1995. 891 p.
14. Levenkov Ya.Yu., Chichekin I.V., Vdovin D.S., Nyrkov F.A., Dushkin M.A., Popova K.V. [Designing guiding device of suspension made of aluminum alloys for multi-purpose driverless vehicle using topological optimization method]. Trudy NAMI, 2023, no. 2 (293), pp. 42–59. DOI: 10.51187/0135-3152-2023-2-42-59. (In Russian)
Review
For citations:
Martynov E.N., Potashov I.S., Zamyslov V.M., Bokarev A.I. Peculiarities of determination of vehicle suspension guiding device kinematics in the design process. Trudy NAMI. 2023;(3):79-94. (In Russ.) https://doi.org/10.51187/0135-3152-2023-3-79-94