Preview

Trudy NAMI

Advanced search

COMPARATIVE ANALYSIS OF THE DIAPHRAGM CLUTCH SPRING ELASTICITY CHARACTERISTICS OBTAINED AS A RESULT OF THE FINITE ELEMENT METHOD MODELING AND ANALYTICAL CALCULATION

Abstract

The clutch is a linking element between the engine and transmission parts. The dynamics of engine loading and transmission and, accordingly, the loads which arise in their structural elements depend on the functioning of the clutch. Coupling with its diaphragm springs has become quite widespread on motor transport. There are various methods for calculating and simulating the operation of couplings with such springs. Nowadays, virtual stands based on the application of the software packages of dynamics of solid bodies with the introduction of flexible elements that allow to take into account the design features of vehicles and their aggregates using CAD and finite element models have become widespread. This method allows you to significantly reduce the number of full-scale tests, and, accordingly, the cost of the final product. Besides, the methods of dynamic solid modeling allow us to develop and verify the laws controlling the units and aggregates of vehicles. In order to make the virtual stand be similar to the actual model, it is necessary to create adequate models of parts, which will later be used in the dynamic solid model of such a stand. To verify the adequacy of finite element models at the design stage, it is advisable to make comparisons with analytical methods of calculation, since carrying out full-scale tests has rather a high labor input and cost. One of the most complex elements in the simulation of coupling is the diaphragm spring. One of the main specific indicators for comparison is its obtained elasticity characteristic, which significantly affects coupling. The paper compares two calculation methods of clutch spring - the analytical method and the method of finite element. The main difficulty in calculating the spring is its large displacement due to its thickness and the appearance of loss of stability during operation, which requires the use of special methods that allow to take into account the complex nature of the spring deformation. Comparative analysis showed that the results of the calculation for the above methods had a quantitative and qualitative convergence. Recommendations are given for solving problems of this kind.

About the Authors

I. V. Chichekin
Bauman Moscow State Technical University
Russian Federation


Ya. Yu. Levenkov
Bauman Moscow State Technical University
Russian Federation


References

1. Чичекин И.В. Конструирование и расчёт шасси автомобиля. Проектирование сцепления. Учебное пособие. - М.: МГИУ, 2010. - 120 с.

2. Проектирование полноприводных колёсных машин: Учебник для вузов: В 3 т. / Б.А. Афанасьев, Б.Н. Белоусов, Г.И. Гладов, Л.Ф. Жеглов, В.Н. Зузов, Г.О. Котиев, А.А. Полунгян, А.Б. Фоминых; Под ред. А.А. Полунгяна. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2008.

3. Кушвид Р.П., Чичекин И.В. Шасси автомобиля. Конструкция и элементы расчёта: учебник. - М.: МГИУ, 2014. - 555 с.

4. Проектирование сцепления. URL: http://twt.mpei.ac.ru/MCS/Worksheets/MSIU/1-Sceplenie.xmcd (дата обращения: 22.05.2017).

5. Расчёт диафрагменной пружины. URL: http://twt.mpei.ac.ru/MCS/Worksheets/MSIU/3-Diff-Prug.xmcd (дата обращения: 22.05.2017).

6. Andreas Myklebust. Dry Clutch Modeling, Estimation, and Control. Linköping Studies in Science and Technology Dissertations, no. 1612. - Linköping, 2014.

7. Edson Luciano Duque, Marco Antonio Barreto, Agenor de Toledo Fleury. Use of different friction models on the automotive clutch energy simulation during vehicle launch / ABCM Symposium Series in Mechatronics. -Rio de Janeiro, RJ, Brazil: ABCM, 2012. - Vol. 5. - Р. 1375-1389.

8. Lisa Wessling. Physical modeling of a clutch for heavy vehicles. Department of Signals and Systems Division of Automatic Control, Automation and Mechatronics Chalmers University of Technology. - Göteborg, Sweden, 2011. - Report No. EX019/2011. - 35 р.

9. Technology. URL: http://www.functionbay.org/technology/multi-flexible-body-dynamics.html (дата обращения: 22.05.2017).

10. Compliant Clutch Tutorial (FFlex). URL: http://www.functionbay.co.kr/documentation/onlinehelp/Documents/Tutorial/Flexible/FFlex/FFlexClutch/FFlexClutch_English.pdf (дата обращения: 22.05.2017).

11. Вдовин Д.С., Чичекин И.В. Автоматизация цикла расчётов нагрузок и оценки прочности при проектировании подвески автомобиля / Пром-Инжиниринг: труды II международной научно-технической конференции. - Челябинск: Издательский центр ЮУрГУ, 2016. - С. 122-125.

12. Zienkiewicz O.C., TaylorR.L. The finite element method for solid and structural mechanics: sixth edition. -Elsevier, 2005. - 631 p.

13. Агапов В.П. Метод конечных элементов в статике, динамике и устойчивости пространственных тонкостенных подкреплённых конструкций. Учебное пособие. - М.: Изд-во АСВ, 2000. - 152 с.

14. Лурье А.И. Теория упругости. - М.: Наука, 1970. - 940 с.

15. Тимошенко С.П., Гудьер Дж. Теория упругости. - М.: Наука, 1975. - 576 с.

16. Кузьмин М.А., Лебедев Д.Л., Попов Б.Г. Прочность, жёсткость, устойчивость элементов конструкций. Теория и практикум. Расчёты на прочность элементов многослойных композитных конструкций. Учебное пособие. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2012. - 344 с.


Review

For citations:


Chichekin I.V., Levenkov Ya.Yu. COMPARATIVE ANALYSIS OF THE DIAPHRAGM CLUTCH SPRING ELASTICITY CHARACTERISTICS OBTAINED AS A RESULT OF THE FINITE ELEMENT METHOD MODELING AND ANALYTICAL CALCULATION. Trudy NAMI. 2017;(3):66-73. (In Russ.)

Views: 570


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0135-3152 (Print)