Preview

Trudy NAMI

Advanced search

MATHEMATICAL MODEL OF HYDROSTATIC-MECHANICAL DRIVE FOR THE FLYWHEEL ENERGY STORAGE

Abstract

It is supposed that each transport vehicle should be equipped with a combined power unit containing an internal combustion engine and an auxiliary power source - a flywheel energy storage with a continuously rated drive. With the help of the proposed methodology it is possible to carry out the mathematical simulation of a two-loop transmission with one three-link differential mechanism which contains a hydrostatic drive in the regulated flywheel storage branch. The analysis of two-loop transmissions has been performed and a rational drive scheme was chosen to illustrate the compiling of a hydrostatic-mechanical drive mathematical model and which was intended to testify a high cross-country capability of a transport vehicle. The study of the hydrostatic drive mathematical model was carried out taking into account the experimentally obtained coefficients of losses, which allowed describing it in the conditions of the complete geometric similarity parameters of hydraulic machines more accurately. The coefficients of hydrostatic drive losses were represented by truncated polynomials which did not exceed the third control parameter of the hydrostatic drive, and it was shown in the example of a Sauer-type hydraulic machine. An algorithm for choosing a rational kinematic scheme was developed and the flow calculation of a two-loop flywheel drive was made. Also the drive efficiency dependences on the parameter of control (ratio) of the hydrostatic drive were determined. The effect of the value of the internal ratio of the three-link differential on the efficiency of the mechanism was estimated as well as and the power transmitted by the hydrostatic-mechanical drive. The proposed mathematical model and the obtained dependences of the efficiency on the hydrostatic-mechanical drive ratio can be used to compile the dynamics equations describing the motion of the transport vehicle equipped with a secondary energy source, that is, a flywheel energy storage. It can be also used for studying the behavior of the vehicle on the ground surface.

About the Author

V. A. Korsunskiy
Bauman Moscow State Technical University
Russian Federation


References

1. Джента Д. Накопители кинетической энергии. Теория и практика современных маховичных систем. - М.: Мир, 1988. - 430 с.

2. Корсунский В.А. Динамические качества гусеничной машины с комбинированной энергетической установкой и механической трансмиссией при разгоне // Инженерный журнал: наука и инновации. - 2013. -Вып. 10. URL: http://engjournal.ru/articles/983/html (дата обращения: 26.05.2017).

3. Magneti Marelli Kers 2009 is clearly a year of change in grand prix racing and one of the single biggest technical challenges is the introduction of Kinetic Energy Recovery Systems (KERS) // Racecar engineering. -2009. - July 31. URL: http://www.racecar-engineering. com/articles/magneti-marelli-kers/ (дата обращения: 26.03.2017).

4. Айтцетмюллер Х. Функциональные свойства и экономичность тракторной и специальной техники с трансмиссиями VDC // Механика машин, механизмов и материалов. - 2009. - № 1 (6). - С. 20-24.

5. Корсунский В.А. Анализ двухпоточных передач и выбор рациональной схемы для использования в приводе маховичного аккумулятора энергии транспортной машины // Инженерный журнал: наука и инновации. - 2017. - Вып. 7. URL: http://dx.doi.org/10.18698/2308-6033-2017-7-1638 (дата обращения: 30.08.2017).

6. Wilson W.E. Mathematical models in fluid power engineering // Hydraulic Pneumatic Power. - 1967. -Vol. 1. - P. 136-147.

7. Schlosser W.M.J. Mathematical model for displacement pumps and motors // Hydraulic Power Transmissions. - 1961. - April. - P. 252-257.

8. Thoma J. Mathematical models and effective performance of hydraulic machines and transmissions // Hydraulic Pneumatic Power. - 1969. - Vol. 15. - No. 179. -P. 642-651.

9. Zarotti G.L., Nervegna N. Pump efficiencies approximation and modeling / 6th International Fluid Power Symposium, 8-10 April 1981. - UK, Cambridge, 1981. -P. 145-164.

10. McCandlish D., Dorey R. The mathematical modelling of hydrostatic pumps and motors / Proceedings of the Institution of Mechanical Engineers. - 1984. - Part B. -Vol. 198. - No. 10. - P. 165-174.

11. Jeong H. A novel performance model given by the physical dimensions of hydraulic axial piston motors: Model derivation // Journal of Mechanical Science and Technology. - 2007. - Vol. 21. - No. 1. - P. 83-97.

12. Kumar N., Dasgupta K., Ahmad F. Analysis of Leakage Flow characteristics in Bent Axis Motors / Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), Dec 18-20 2013. - India, IIT Roorkee, 2013. - P. 318-323.

13. Шарипов В.М., Крумбольдт Л.Н., Маринкин А.П. Планетарные коробки передач колёсных и гусеничных машин. - М.: Изд-во МГТУ «МАМИ», 2000. - 142 с.


Review

For citations:


Korsunskiy V.A. MATHEMATICAL MODEL OF HYDROSTATIC-MECHANICAL DRIVE FOR THE FLYWHEEL ENERGY STORAGE. Trudy NAMI. 2017;(4):38-45. (In Russ.)

Views: 131


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0135-3152 (Print)