Preview

Trudy NAMI

Advanced search

Gasoline engines: development trends

Abstract

The article provides an analytical overview of promising technical solutions for gasoline engines of motor vehicles which is aimed at a significant reduction in fuel consumption and CO2 emissions of the exhaust gases. It is shown that the main development trend gasoline internal combustion engine (ICE) of a conventional vehicle is the growth of turbocharge use, accompanied by an increase in specific power and a decrease in the ICE dimension, as well as by the decrease of fuel consumption and CO2 emissions preserving at the same time vehicle speed characteristics. The main tendency in improving the efficiency of the ICE is to increase the expansion (compression) ratio up to 13-15 units. To solve the problems of combustion detonation in the near future it is expected to expand and improve the existing technologies (gasoline direct injection, adjustable valve drive, vortex control), as well as to develop new technologies (Miller cycle, variable compression ratio, recirculation of cooled exhaust gases). The ways to improve the gasoline ICE hybrids depend on the degree of electrification of the actuator. With a relatively low degree of electrification of the ICE it is expected to improve starting and vibroacoustics efficiency together with the rise of efficiency by measures characteristic for conventional ICE. The higher the degree of electrification, the more important power, vibroacoustics, size and cost of the engine, while its structure and optimum control provide its high general efficiency. In the long term (after 2025) the probable direction of the further efficiency increase of ICE may be the realization of a lean homogeneous mixture combustion in the low-temperature combustion mode. The implementation of this tendency will depend on the success in the development of efficient and low-cost NOx reduction technologies of lean burn products, as well as the use of high-speed and self-learning controlling systems.

About the Authors

V. F. Kutenev
Federal State Unitary Enterprise “Central Scientific Research Automobile and Automotive Engines Institute”
Russian Federation


V. I. Sonkin
Federal State Unitary Enterprise “Central Scientific Research Automobile and Automotive Engines Institute”
Russian Federation


References

1. EPA and NHTSA finalize historic national program to reduce greenhouse gases and improve fuel economy for cars and trucks. EPA-420-F-10-014. URL: http://www. cnama.org/wp-content/uploads/2010/10/420f10014.pdf (дата обращения: 19.01.2017).

2. Annual mean CO2 concentration at Mauna Loa Observatory. National Oceanic and Atmospheric Administration. Recent monthly average Mauna Loa CO2. URL: https://www.esrl.noaa.gov/gmd/ccgg/trends/ (дата обращения: 19.01.2017).

3. On the road toward 2050: Potential for substantial reductions in light-duty vehicle energy use and greenhouse gas emissions / Ed. J. Heywood and D. MacKenzie. - MIT Energy Initiative Report, 2015. - 288 с.

4. Advancing technology for America’s transportation future. - Summary Report, National Petroleum Council, 2012. - 69 с.

5. Transitions to alternative vehicles and fuels. National Research Council Committee on Transitions to Alternative Vehicles and Fuels. - Washington, National Academy Press, 2013. - 395 с.

6. Catalogue of «Automobil Revue». - Berne, 2005, 2009, 2015. - 594 с.

7. Кутенёв В.Ф., Сонкин В.И. Автомобильные бензиновые двигатели: смена приоритетов // Труды НАМИ. - 2013. - № 252. - С. 5-31.

8. Isenstadt A., German J., Dorobantu M. Naturally aspirated gasoline engines and cylinder deactivation. International Council on Clean Transportation Working Paper 2016-12. - 2016. - С. 1-16.

9. Isenstadt A., German J., Dorobantu M., Boggs D., Watson T. Downsized, boosted gasoline engines. International Council on Clean Transportation Working Paper 2016-21. - 2016. - С. 1-23.

10. Каменев В.Ф., Миронычев М.А., Сонкин В.И. Перспективы и проблемы непосредственного впрыска бензина // Труды НАМИ. - 2003. - № 231. - С. 63-85.

11. Сонкин В.И. Регулируемый клапанный привод автомобильного двигателя. - М.: Машиностроение, 2015. - 124 с.

12. Зленко М.А. Повышение топливной экономичности бензиновых двигателей путём отключения части цилиндров: дисс.. канд. техн. наук. - М., 1986. -210 с.

13. Ханин Н.С., Аболтин Э.В., Лямцев Б.Ф., Зайченко Е.Н., Аршинов Л.С. Автомобильные двигатели с турбонаддувом. - М.: Машиностроение, 1991. - 336 с.

14. Сонкин В.И. Бензиновый двигатель пониженной размерности - современная концепция // Труды НАМИ. - 2015. - № 261. - С. 68-84.

15. Автомобильные двигатели / под ред. М.С. Ховаха. - М.: Машиностроение, 1977. - 591 с.

16. Heywood J.B. Internal Combustion Engine Fundamentals. - McGraw-Hill Inc., 1988. - 930 с.

17. Bruce C. Volkswagen’s new engine packs a variable geometry turbo. URL: http://www.autoblog. com/2016/04/28/volkswagen-engine-variable-turbo-ea211-vienna/ (дата обращения: 19.01.2017).

18. Mazda CX-9 shows 32% improvement in EPA-estimated fuel economy over predecessor; SKY-ACTIV-G 2.5 turbo. URL: http://www.greencarcongress. com/2016/03/2016-mazda-cx-9-shows-32-improvement-in-epa-estimated-fuel-economy-over-predecessor-skyac-tiv-g-25-tu.html (дата обращения: 19.01.2017).

19. Audi introduces new high-efficiency 2.0L TFSI based on Miller Cycle; 190 hp, 47 mpg. URL: http://www. greencarcongress.com/2015/05/20150708-audi.html (дата обращения: 19.01.2017).

20. Двигатель внутреннего сгорания: патент 2030608 Росс. Федерация. № 4787772/06; заявл. 02.02.1990; опубл. 10.03.1995.

21. Hubkolben-brennkraftmaschine mit variablem verdichtungsverthaltnis: patent DE 5010234D1, 2002.

22. Kendal J. Nissan unveils 2018 production variablecompression-ratio IC // Automotive Engineering, October 03, 2016. URL: http://articles.sae.org/15040/ (дата обращения: 19.01.2017).

23. Magda M. Porsche working on variable compression connecting rod. URL: http://www.enginelabs.com/ news/porsche-working-on-variable-compression-con-necting-rod/ (дата обращения: 19.01.2017).

24. Wilcutts M., Switkes J., Shost M., Tripathi A. Design and benefits of dynamic skip fire strategies for cylinder deactivated engines // SAE Paper. - 2013. - № 201301-0359. - С. 1-11.

25. Birch S. Ford tests cylinder deactivation on its 1.0-L EcoBoost triple // Automotive Engineering. - 2015. -Vol. 2. - № 6. - С. 6-8.

26. Nakata K., Nogava S., Takashi D., Yoshihara Y., Kumagai A., Suzuki T. Engine technologies for achieving 45% thermal efficiency of S.I. engine // SAE International Journal Engines. -2016. - № 9. - С. 179-185.

27. Сонкин В.И., Артёмов А.А., Иванов Д.А., Шустрое Ф.А. Бензиновый двигатель с процессом управляемого самовоспламенения // Труды НАМИ. - 2010. - № 245. - С. 30-41.

28. Wagner R.M. Engines of the Future. URL: https:// www.asme.org/engineering-topics/articles/energy/en-gines-of-the-future (дата обращения: 19.01.2017).

29. German J. Hybrid vehicles technology development and cost reduction. International Council on Clean Transportation, Technical Brief. - 2015. - № 1. - С. 1-18.

30. Kawamoto N., Naiki K., Kawai T., Shikida T., Tomatsuri M. Development of new 1.8-liter engine for hybrid vehicles // SAE Paper. - 2009. - № 2009-01-1061. -С. 1-9.

31. Fraidl G., Ebner P., Geiger U., Atzwanger M., Grantner H., Weissback M. Impact of electrification on the internal combustion engine / Proceedings Engine & Environment 2009: Combustion Engine and Electric Drive -Partners or Competitors in the Powertrain of the Future? 21st International AVL Conference “Engine & Environment”, September 10-11, 2009. - Graz, Austria, 2009. -С. 175-186.

32. Beste F., Fischer R., Ellinger R., Pels T. The pure Range Extender as enabler for electric vehicle / Proceedings Engine & Environment 2009: Combustion Engine and Electric Drive - Partners or Competitors in the Powertrain of the Future? 21st International AVL Conference “Engine & Environment”, September 10-11, 2009. - Graz, Austria, 2009. - С. 91-100.

33. Yamaguchi J. Steering Mazda’s unique course // Automotive Engineering. - 2016. - Vol. 3. - № 8. -P. 18-22.


Review

For citations:


Kutenev V.F., Sonkin V.I. Gasoline engines: development trends. Trudy NAMI. 2017;(1):6-21. (In Russ.)

Views: 393


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0135-3152 (Print)