Preview

Труды НАМИ

Расширенный поиск

Теплоноситель с наночастицами мультиграфена для интенсификации процессов теплообмена в системах охлаждения двигателей внутреннего сгорания

Аннотация

Разработаны способ получения наночастиц мультиграфена, представляющего собой частицы, состоящие из нескольких слоев графена с высоким значением коэффициента теплопроводности, и метод диспергирования этих частиц в водном растворе этиленгликоля с массовой концентрацией последнего 20% (ВЭГ 20%), с получением устойчивой суспензии «жидкость - твёрдые частицы мультиграфена» для экспериментального определения влияния массовой концентрации наночастиц и температуры на коэффициент теплопроводности наножидкости, так как последний существенно зависит от применяемых технологий. Рассмотренные теоретические модели теплопроводности двухфазных сред «жидкость - твёрдые частицы» не позволили адекватно описать поведение коэффициента теплопроводности λnf наножидкостей на основе ВЭГ 20% и мультиграфена. Получены экспериментальные данные, свидетельствующие о значительном повышении коэффициента теплопроводности наножидкости на основе ВЭГ 20% и мультиграфена при увеличении его концентрации и температуры суспензии. Это в свою очередь приводит к увеличению интенсивности теплоотдачи на границе «стенка - охлаждающая жидкость» при применении указанной наножидкости в системах охлаждения тепловых двигателей по сравнению с используемой в настоящее время базовой жидкостью (ВЭГ 20%). В соответствии с этим понизятся и температуры теплонапряжённых деталей, охлаждаемых такой наножидкостью. С применением компьютерного моделирования, методом вычислительной гидродинамики показано снижение на 8°С максимальных и средних температур стенки гильзы цилиндра двигателя 6ЧН 13/14 при использовании в качестве теплоносителя суспензии с массовым содержанием мультиграфена 0,75%. При этом необходимо учесть, что коэффициент теплоотдачи от нагретой стенки к наножидкости зависит не только от её коэффициента теплопроводности, но и от величины её коэффициента динамической или кинематической вязкости, что может привести к некоторому уменьшению эффекта интенсификации процесса теплоотдачи в системах охлаждения. Последнее связано с тем, что добавление наночастиц в ОЖ приводит и к некоторому увеличению её коэффициента вязкости.

Об авторах

А. В. Жаров
Федеральное государственное бюджетное образовательное учреждение высшего образования «Ярославский государственный технический университет»
Россия


Р. В. Горшков
Федеральное государственное бюджетное образовательное учреждение высшего образования «Ярославский государственный технический университет»
Россия


Н. Г. Савинский
Ярославский филиал Федерального государственного бюджетного учреждения науки Физико-технологического института Российской академии наук
Россия


Список литературы

1. Choi S.U.S. Enhancing thermal conductivity of fluids with nanoparticles // Developments and Applications of Non-Newtonian Flows. - 1995. - FED-231/MD66, ASME, New York. - P. 99-105.

2. Жаров А.В., Горшков Р.В., Савинский Н.Г., Павлов А.А. Охлаждающие наножидкости на основе оксида графена для тепловых двигателей // Труды НАМИ. - 2018. - № 1 (272). - С. 21-27.

3. Kalpana Sarojini K. Gandhi, Manojsiva Velayutham, Sarit K. DAS, Sundararajan Thirumalachari. Measurement of thermal and electrical conductivities of graphene nanofluids / 3rd Micro and Nano Flows Conference Thessaloniki, Greece. - 2011. - P. 22-24.

4. Tessy Theres Baby. Enhanced convective heat transfer using graphene dispersed nanofluids // Nanoscale Research Letters. - Vol. 6. - 2011. - P. 289.

5. Tessy Theres Baby. Investigation of thermal and electrical conductivity of graphene based nanofluids // Journal of Applied Physics. - 2011. - 8 p.

6. Yu W., Xie H., Wang X. Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets // Physics Letters A. - Vol. 375. -No. 10. - 2011. - P. 1323-1328.

7. Khan M. F. Shahil, Alexander A. Balandin Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials // Solid State Communications. - Vol. 152. - 2012. - P. 1331-1340.

8. Wang Х., Xu X. Thermal Conductivity of Nanoparticle-Fluid Mixture // Journal of thermophysics and heat transfer. - Vol. 13. - 1999. - No. 4. - P. 474.

9. Bourlinos A.B., Georgakilas V., Zboril R. Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes // Solid State Communications. - Vol. 149. -2009. - P. 2172-2176.

10. Jellinelc H.G., Folc S.Y. Freezing of Aqueous Polyvinylpyrrolidone Solutions // Colloide and polymer Science. - Vol. 220. - 1967. - No. 2. - P. 122-133.

11. Maxwell J.C. A Treatise on Electricity and Magnetism. - Oxford University Press., Cambridge, 1904.

12. Hamilton R.L., Crosser O.K. Industrial & Engineering Chemistry Fundamentals. - 1962. - No. 7. -P. 187.

13. Kleinstreuer C., Feng Y. Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review // Nanoscale Research Letters. -No. 6. - 2011. - P. 229.

14. Wang B.X., Zhou L.P., Peng X.F. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles // International Journal of Heat and Mass Transfer. - Vol. 46. - 2003. - P. 2665-2672.

15. Yu W., Choi S.U.S. The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model // Journal of Nanoparticle Research. - Vol. 5. - 2003. - P. 167-171.

16. Jang S.P., Choi S.U.S. Role of Brownian motion in the enhanced thermal conductivity of nanofluids // Applied Physics Letters. - Vol. 84. - 2004. - P. 4316.

17. Keblinski P., Phillpot S.R., Choi S.U.S., Eastman J.A. Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids) // International Journal of Heat and Mass Transfer. - Vol. 45. - 2002. - P. 855.

18. Kumar G.H., Patel H.E., Kumar V.R.R., Sundararajan T., Pradeep T., Das S.K. Model for heat conduction in nanofluids // Physical Review Letters. -Vol. 93. - 2004. - P. 144301.

19. Prasher R., Bhattacharya P., Phelan P.E. Thermal conductivity of nanoscale colloidal solutions (nanofluids) // Physical Review Letters. - Vol. 94. - 2005. - P. 025901.

20. Ren Y., Xie H., Cai A. Effective Thermal Conductivity of Nanofluids Containing Spherical Nanoparticles // Journal of Physics D: Applied Physics. -Vol. 39. - 2005. - P. 3958.

21. Gao L., Zhou X.F. Physics Letters A. - Vol. 348. -2006. - P. 355.

22. Nan C.W., Birringer R., Clarke D., Gleiter H. The Effective Thermal Conductivity or Particular Composites with Interfacial Thermal Resistance // Journal of Applied Physics. 81. 6692-6699. 10.1063/1.365209. - 1997.

23. Kapitza P. L. // J. Phys. (Moscow). - 1941. -No. 4. - P. 181.

24. Дымент О.Н., Казанский К.С., Мирошников А.М. Гликоли и другие производные окисей этилена и пропилена. - М.: Химия, 1976. - 373 c.

25. Mehrali M. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets // Nanoscale Research Letters. -2014. - 12 p.

26. Mahboubeh H., Elaheh G., Abbas Y. Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids // Journal of nanoparticle research. - 2014. - 18 p.

27. Ijam A., Saidur R., Ganesan P., Golsheikh A.M. Stability, thermo-physical properties, and electrical conductivity of graphene oxide-deionized water/ethylene glycol based nanofluid // International Journal of Heat and Mass Transfer. - 2015. - P. 92-103.

28. Kumar K.D., Gowd B.U.M. Convective heat trans fer characteristics of graphene dispersed nanofluids // Int. J. Mech. Eng. - 2012. - Vol. 1. - No. 2. - 11 p.

29. Nika D.L., Pokatilov E.P., Askerov A.S., Balandin A.A. Phonon thermal conduction in graphene: role of umklapp and edge roughness scattering // Phys Rev B 79:155413. - 2009.


Рецензия

Для цитирования:


Жаров А.В., Горшков Р.В., Савинский Н.Г. Теплоноситель с наночастицами мультиграфена для интенсификации процессов теплообмена в системах охлаждения двигателей внутреннего сгорания. Труды НАМИ. 2018;(4):48-56.

For citation:


Zharov A.V., Gorshkov R.V., Savinskiy N.G. Heat carrier with multigrafen nanoparticles to process heat exchange intensification in internal combustion engines cooling systems. Trudy NAMI. 2018;(4):48-56. (In Russ.)

Просмотров: 125


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0135-3152 (Print)