Preview

Trudy NAMI

Advanced search

Heat carrier with multigrafen nanoparticles to process heat exchange intensification in internal combustion engines cooling systems

Abstract

A method for the production of multigrafen nanoparticles has been developed. These particles consist of several layers of graphene, with a high value of the thermal conductivity, and a method to disperse the particles in an aqueous solution of ethylene glycol with a mass concentration of the latter 20% (VEG 20%). These methods have been worked out with the purpose to obtain a stable suspension “liquid - solid multigraphic particles” and experimentally determine the influence of the mass concentration of nanoparticles and temperature on the thermal conductivity coefficient of nanofluids, since the latter depends essentially on the used technologies. The considered theoretical models of the thermal conductivity of two-phase “liquid-solid particles” media did not permit an adequate description of the thermal conductivity behavior coefficient A,nf of nanofluids on the basis of 20% VEG and multigrafen. Experimental data have been obtained indicating a significant increase in the thermal conductivity of nanofluid on the basis of VEG 20% and multigrafen with an increase in its concentration and temperature of the suspension. This in turn leads to an increase in the intensity of heat transfer at the “wall - coolant” boundary when using this nanofluid in the cooling systems of heat engines compared to the base fluid currently used (VEG 20%). In accordance with this, the temperatures of heat-stressed parts cooled by such a nanofluid will also decrease. With the use of computer simulation, the method of computational hydrodynamics shows a decrease by 8°C of the maximum and average temperatures of the cylinder liner wall of the 6CHN 13/14 engine when using as a coolant a suspension with a mass content of multigrafen 0.75%. It should be noted that the heat transfer coefficient from the heated wall to the nanofluid depends not only on its heat conduction coefficient, but also on the value of its dynamic or kinematic viscosity coefficient, which can lead to a slight decrease in the effect of heat transfer in cooling systems. The latter is due to the fact that the addition of nanoparticles in the coolant leads to a slight increase in its viscosity coefficient.

About the Authors

A. V. Zharov
Yaroslavl State Technical University
Russian Federation


R. V. Gorshkov
Yaroslavl State Technical University
Russian Federation


N. G. Savinskiy
Yaroslavl Branch of the Institute of Physics and Technology, Institution of Russian Academy of Sciences
Russian Federation


References

1. Choi S.U.S. Enhancing thermal conductivity of fluids with nanoparticles // Developments and Applications of Non-Newtonian Flows. - 1995. - FED-231/MD66, ASME, New York. - P. 99-105.

2. Жаров А.В., Горшков Р.В., Савинский Н.Г., Павлов А.А. Охлаждающие наножидкости на основе оксида графена для тепловых двигателей // Труды НАМИ. - 2018. - № 1 (272). - С. 21-27.

3. Kalpana Sarojini K. Gandhi, Manojsiva Velayutham, Sarit K. DAS, Sundararajan Thirumalachari. Measurement of thermal and electrical conductivities of graphene nanofluids / 3rd Micro and Nano Flows Conference Thessaloniki, Greece. - 2011. - P. 22-24.

4. Tessy Theres Baby. Enhanced convective heat transfer using graphene dispersed nanofluids // Nanoscale Research Letters. - Vol. 6. - 2011. - P. 289.

5. Tessy Theres Baby. Investigation of thermal and electrical conductivity of graphene based nanofluids // Journal of Applied Physics. - 2011. - 8 p.

6. Yu W., Xie H., Wang X. Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets // Physics Letters A. - Vol. 375. -No. 10. - 2011. - P. 1323-1328.

7. Khan M. F. Shahil, Alexander A. Balandin Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials // Solid State Communications. - Vol. 152. - 2012. - P. 1331-1340.

8. Wang Х., Xu X. Thermal Conductivity of Nanoparticle-Fluid Mixture // Journal of thermophysics and heat transfer. - Vol. 13. - 1999. - No. 4. - P. 474.

9. Bourlinos A.B., Georgakilas V., Zboril R. Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes // Solid State Communications. - Vol. 149. -2009. - P. 2172-2176.

10. Jellinelc H.G., Folc S.Y. Freezing of Aqueous Polyvinylpyrrolidone Solutions // Colloide and polymer Science. - Vol. 220. - 1967. - No. 2. - P. 122-133.

11. Maxwell J.C. A Treatise on Electricity and Magnetism. - Oxford University Press., Cambridge, 1904.

12. Hamilton R.L., Crosser O.K. Industrial & Engineering Chemistry Fundamentals. - 1962. - No. 7. -P. 187.

13. Kleinstreuer C., Feng Y. Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review // Nanoscale Research Letters. -No. 6. - 2011. - P. 229.

14. Wang B.X., Zhou L.P., Peng X.F. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles // International Journal of Heat and Mass Transfer. - Vol. 46. - 2003. - P. 2665-2672.

15. Yu W., Choi S.U.S. The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model // Journal of Nanoparticle Research. - Vol. 5. - 2003. - P. 167-171.

16. Jang S.P., Choi S.U.S. Role of Brownian motion in the enhanced thermal conductivity of nanofluids // Applied Physics Letters. - Vol. 84. - 2004. - P. 4316.

17. Keblinski P., Phillpot S.R., Choi S.U.S., Eastman J.A. Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids) // International Journal of Heat and Mass Transfer. - Vol. 45. - 2002. - P. 855.

18. Kumar G.H., Patel H.E., Kumar V.R.R., Sundararajan T., Pradeep T., Das S.K. Model for heat conduction in nanofluids // Physical Review Letters. -Vol. 93. - 2004. - P. 144301.

19. Prasher R., Bhattacharya P., Phelan P.E. Thermal conductivity of nanoscale colloidal solutions (nanofluids) // Physical Review Letters. - Vol. 94. - 2005. - P. 025901.

20. Ren Y., Xie H., Cai A. Effective Thermal Conductivity of Nanofluids Containing Spherical Nanoparticles // Journal of Physics D: Applied Physics. -Vol. 39. - 2005. - P. 3958.

21. Gao L., Zhou X.F. Physics Letters A. - Vol. 348. -2006. - P. 355.

22. Nan C.W., Birringer R., Clarke D., Gleiter H. The Effective Thermal Conductivity or Particular Composites with Interfacial Thermal Resistance // Journal of Applied Physics. 81. 6692-6699. 10.1063/1.365209. - 1997.

23. Kapitza P. L. // J. Phys. (Moscow). - 1941. -No. 4. - P. 181.

24. Дымент О.Н., Казанский К.С., Мирошников А.М. Гликоли и другие производные окисей этилена и пропилена. - М.: Химия, 1976. - 373 c.

25. Mehrali M. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets // Nanoscale Research Letters. -2014. - 12 p.

26. Mahboubeh H., Elaheh G., Abbas Y. Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids // Journal of nanoparticle research. - 2014. - 18 p.

27. Ijam A., Saidur R., Ganesan P., Golsheikh A.M. Stability, thermo-physical properties, and electrical conductivity of graphene oxide-deionized water/ethylene glycol based nanofluid // International Journal of Heat and Mass Transfer. - 2015. - P. 92-103.

28. Kumar K.D., Gowd B.U.M. Convective heat trans fer characteristics of graphene dispersed nanofluids // Int. J. Mech. Eng. - 2012. - Vol. 1. - No. 2. - 11 p.

29. Nika D.L., Pokatilov E.P., Askerov A.S., Balandin A.A. Phonon thermal conduction in graphene: role of umklapp and edge roughness scattering // Phys Rev B 79:155413. - 2009.


Review

For citations:


Zharov A.V., Gorshkov R.V., Savinskiy N.G. Heat carrier with multigrafen nanoparticles to process heat exchange intensification in internal combustion engines cooling systems. Trudy NAMI. 2018;(4):48-56. (In Russ.)

Views: 129


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0135-3152 (Print)